Wednesday, December 15, 2010

Hot Plasma Explosions Inflate Saturn's Magnetic Field

December 14, 2010

A new analysis based on data from NASA's Cassini spacecraft finds a causal link between mysterious, periodic signals from Saturn's magnetic field and explosions of hot ionized gas, known as plasma, around the planet.


Scientists have found that enormous clouds of plasma periodically bloom around Saturn and move around the planet like an unbalanced load of laundry on spin cycle. The movement of this hot plasma produces a repeating signature "thump" in measurements of Saturn's rotating magnetic environment and helps to illustrate why scientists have had such a difficult time measuring the length of a day on Saturn.


"This is a breakthrough that may point us to the origin of the mysteriously changing periodicities that cloud the true rotation period of Saturn," said Pontus Brandt, the lead author on the paper and a Cassini team scientist based at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. "The big question now is why these explosions occur periodically."

The data show how plasma injections, electrical currents and Saturn's magnetic field -- phenomena that are invisible to the human eye -- are partners in an intricate choreography. Periodic plasma explosions form islands of pressure that rotate around Saturn. The islands of pressure "inflate" the magnetic field.


A new animation showing the linked behavior is available at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov/.


The visualization shows how invisible hot plasma in Saturn's magnetosphere – the magnetic bubble around the planet -- explodes and distorts magnetic field lines in response to the pressure. Saturn's magnetosphere is not a perfect bubble because it is blown back by the force of the solar wind, which contains charged particles streaming off the sun.


The force of the solar wind stretches the magnetic field of the side of Saturn facing away from the sun into a so-called magnetotail. The collapse of the magnetotail appears to kick off a process that causes the hot plasma bursts, which in turn inflate the magnetic field in the inner magnetosphere.


Scientists are still investigating what causes Saturn's magnetotail to collapse, but there are strong indications that cold, dense plasma originally from Saturn's moon Enceladus rotates with Saturn. Centrifugal forces stretch the magnetic field until part of the tail snaps back.


The snapping back heats plasma around Saturn and the heated plasma becomes trapped in the magnetic field. It rotates around the planet in islands at the speed of about 100 kilometers per second (200,000 mph). In the same way that high and low pressure systems on Earth cause winds, the high pressures of space cause electrical currents. Currents cause magnetic field distortions.


A radio signal known as Saturn Kilometric Radiation, which scientists have used to estimate the length of a day on Saturn, is intimately linked to the behavior of Saturn's magnetic field. Because Saturn has no surface or fixed point to clock its rotation rate, scientists inferred the rotation rate from timing the peaks in this type of radio emission, which is assumed to surge with each rotation of a planet. This method has worked for Jupiter, but the Saturn signals have varied. Measurements from the early 1980s taken by NASA's Voyager spacecraft, data obtained in 2000 by the ESA/NASA Ulysses mission, and Cassini data from about 2003 to the present differ by a small, but significant degree. As a result, scientists are not sure how long a Saturn day is.


"What's important about this new work is that scientists are beginning to describe the global, causal relationships between some of the complex, invisible forces that shape the Saturn environment," said Marcia Burton, the Cassini fields and particles investigation scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "The new results still don't give us the length of a Saturn day, but they do give us important clues to begin figuring it out. The Saturn day length, or Saturn's rotation rate, is important for determining fundamental properties of Saturn, like the structure of its interior and the speed of its winds."


Plasma is invisible to the human eye. But the ion and neutral camera on Cassini's magnetospheric imaging instrument provides a three-dimensional view by detecting energetic neutral atoms emitted from the plasma clouds around Saturn. Energetic neutral atoms form when cold, neutral gas collides with electrically-charged particles in a cloud of plasma. The resulting particles are neutrally charged, so they are able to escape magnetic fields and zoom off into space. The emission of these particles often occurs in the magnetic fields surrounding planets.


By stringing together images obtained every half hour, scientists produced movies of plasma as it drifted around the planet. Scientists used these images to reconstruct the 3-D pressure produced by the plasma clouds, and supplemented those results with plasma pressures derived from the Cassini plasma spectrometer. Once scientists understood the pressure and its evolution, they could calculate the associated magnetic field perturbations along the Cassini flight path. The calculated field perturbation matched the observed magnetic field "thumps" perfectly, confirming the source of the field oscillations.


"We all know that changing rotation periods have been observed at pulsars, millions of light years from our solar system, and now we find that a similar phenomenon is observed right here at Saturn," said Tom Krimigis, principal investigator of the magnetospheric imaging instrument, also based at the Applied Physics Laboratory and the Academy of Athens, Greece. "With instruments right at the spot where it's happening, we can tell that plasma flows and complex current systems can mask the real rotation period of the central body. That's how observations in our solar system help us understand what is seen in distant astrophysical objects."


The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif. manages the mission for NASA's Science Mission Directorate, Washington, D.C. The magnetic imaging instrument team is based at the Johns Hopkins University Applied Physics Laboratory, Laurel, Md.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov/  and http://www.nasa.gov/cassini .

NASA Probe Sees Solar Wind Decline En Route To Interstellar Space

Dwayne Brown
Headquarters, Washington
202-358-1726
dwayne.c.brown@nasa.gov

Jia-Rui Cook
818-359-3241
Jet Propulsion Laboratory, Pasadena, Calif.
jccook@jpl.nasa.gov


Dec. 13, 2010 RELEASE : 10-334 NASA Probe Sees Solar Wind Decline En Route To Interstellar Space PASADENA, Calif. -- The 33-year odyssey of NASA's Voyager 1 spacecraft has reached a distant point at the edge of our solar system where there is no outward motion of solar wind.


Now hurtling toward interstellar space some 10.8 billion miles from the sun, Voyager 1 has crossed into an area where the velocity of the hot ionized gas, or plasma, emanating directly outward from the sun has slowed to zero. Scientists suspect the solar wind has been turned sideways by the pressure from the interstellar wind in the region between stars.


The event is a major milestone in Voyager 1's passage through the heliosheath, the turbulent outer shell of the sun's sphere of influence, and the spacecraft's upcoming departure from our solar system.
"The solar wind has turned the corner," said Ed Stone, Voyager project scientist based at the California Institute of Technology in Pasadena, Calif. "Voyager 1 is getting close to interstellar space."

Our sun gives off a stream of charged particles that form a bubble known as the heliosphere around our solar system. The solar wind travels at supersonic speed until it crosses a shockwave called the termination shock. At this point, the solar wind dramatically slows down and heats up in the heliosheath.

Launched on Sept. 5, 1977, Voyager 1 crossed the termination shock in December 2004 into the heliosheath. Scientists have used data from Voyager 1's Low-Energy Charged Particle Instrument to deduce the solar wind's velocity.

When the speed of the charged particles hitting the outward face of Voyager 1 matched the spacecraft's speed, researchers knew that the net outward speed of the solar wind was zero. This occurred in June, when Voyager 1 was about 10.6 billion miles from the sun.

Because the velocities can fluctuate, scientists watched four more monthly readings before they were convinced the solar wind's outward speed actually had slowed to zero. Analysis of the data shows the velocity of the solar wind has steadily slowed at a rate of about 45,000 mph each year since August 2007, when the solar wind was speeding outward at about 130,000 mph. The outward speed has remained at zero since June.

The results were presented at the American Geophysical Union meeting in San Francisco.


"When I realized that we were getting solid zeroes, I was amazed," said Rob Decker, a Voyager Low-Energy Charged Particle Instrument co-investigator and senior staff scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. "Here was Voyager, a spacecraft that has been a workhorse for 33 years, showing us something completely new again."

Scientists believe Voyager 1 has not crossed the heliosheath into interstellar space. Crossing into interstellar space would mean a sudden drop in the density of hot particles and an increase in the density of cold particles. Scientists are putting the data into their models of the heliosphere's structure and should be able to better estimate when Voyager 1 will reach interstellar space. Researchers currently estimate Voyager 1 will cross that frontier in about four years.

"In science, there is nothing like a reality check to shake things up, and Voyager 1 provided that with hard facts," said Tom Krimigis, principal investigator on the Low-Energy Charged Particle Instrument, who is based at the Applied Physics Laboratory and the Academy of Athens, Greece. "Once again, we face the predicament of redoing our models."

A sister spacecraft, Voyager 2, was launched in Aug. 20, 1977 and has reached a position 8.8 billion miles from the sun. Both spacecraft have been traveling along different trajectories and at different speeds. Voyager 1 is traveling faster, at a speed of about 38,000 mph, compared to Voyager 2's velocity of 35,000 mph. In the next few years, scientists expect Voyager 2 to encounter the same kind of phenomenon as Voyager 1.

The Voyagers were built by NASA's Jet Propulsion Laboratory in Pasadena, Calif., which continues to operate both spacecraft. For more information about the Voyager spacecraft, visit:
http://www.nasa.gov/voyager

- end -

Tuesday, December 14, 2010

Walter Russell - KNOWING God

Walter Russell - It has often been declared that the human mind could never comprehend God. That statement has been based upon the assumption that the reason we could never comprehend God is that our senses could not detect God.


It is true that we cannot see God but we can KNOW Him. And therein is the essence of New Age thinking. The next hundred years will see as great a spiritual advance in the culture of our civilization as it has seen physically during the past hundred years. That which we cannot see, we can KNOW. We can see the bodies of men but we cannot see man, for the supreme Being within man is invisible. He cannot be seen. He can only be known. For the same reason we cannot see God but we can know Him, and we can know the nature of God by knowing His laws and creative processes.

Antikythera Mechanism - 2,000 Year Old Computer...reCreated!